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1. Introduction

Convective flow in fluid-saturated porous media has
been studied quite extensively over the last several de-
cades. Numerous authors cite a wide variety of practical
applications of this phenomena that includes utilization
of geothermal energy, fiber and granular insulations,
design of packed bed reactors, underground disposal of
nuclear waste materials, etc. Several others investigate
the intricate nature of solution structure from a funda-
mental point of view in some particular situations.
Comprehensive reviews on the subject can be found in
the books by Nield and Bejan [1], Nakayama [2], Ing-
ham and Pop [3] and Vafai [4].

In practical applications most of the convective flows
in porous media are non-isothermal. The assumption of
wall temperature distribution which permits similarity
solutions is very often used. Thus, analytical solutions of
the flow and heat transfer can be obtained and therefore
fluid flow and heat transfer characteristics can be easily
analyzed.

Nakayama and Koyama [5] treated by introducing a
general transformation procedure one of the most fun-
damental case of convective flow in porous media,
namely the problem of combined free and forced con-
vection over a plane or axisymmetric body of arbitrary
shape which is embedded in a fluid-saturated porous
medium. The analysis shows that unlike in pure forced
convection, similarity solutions in mixed convection
flow regime are possible only when the external free-
stream velocity varies everywhere in properties to the
product of the streamwise component of the gravity
force and the wall-ambient temperature difference.
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However, no closed form analytical solutions were re-
ported by Nakayama and Koyama [5].

In this note, we shall consider the same physical
model of Nakayama and Koyama [5], and identify a
particular flow regime when the mixed convection
parameter Ra,/Pe, is constant; Ra, and Pe, are the local
Rayleigh and Péclet numbers for a porous medium.
Closed form analytical solutions are obtained, which
subsequently lead to multiple (dual) solutions. However,
Nakayama and Koyama [5] have not examined the
multiplicity features of these solutions. It is also worth
mentioning that Merkin [6,7] has studied dual solutions
for the mixed convection boundary-layer flow over a
vertical isothermal surface embedded in a porous me-
dium the mixed convection parameter being noted by o.
It was shown that the boundary value problem has just
one solution for «<0 and no solutions for o > o
(=~0.354), while for 0 < a < o there were two solutions,
an upper solution F, and a lower solution F with
0 < F/'(0) < FI'(0).

2. Basic equations and solutions

Consider a plane or axisymmetric body of arbitrary
shape embedded in a fluid-saturated porous medium.
The geometry and wall temperature of the heated body
are specified by the functions r(x) and T, (x), where x is
the coordinate measured along the surface of the body
from its lower stagnation point. It is also assumed that
the tangential component of the acceleration due to
gravity g, is a function of the wall geometry r(x). Under
the boundary layer and Darcy—Boussinesq approxima-
tions the governing equations of the steady mixed con-
vection flow past a plane or axisymmetric body of
arbitrary shape were reduced by Nakayama and Koy-
ama [5] to the following form:
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Nomenclature Ra,  local Rayleigh number
X coordinate measured along the surface of the
b mixed convection parameter, Eq. (6) body
f non-dimensional stream function
g acceleration due to gravity Greek symbols
p tangential component of the acceleration due n similarity variable
to gravity g 0 non-dimensional temperature
1 function related to the body geometry and its A exponent associated with the wall temperature
surface temperature distribution distribution
n function related to the surface temperature ¢ transformed variable in the streamwise
distribution direction, Eq. (5)
nl lumped parameter, Eq. (4) AT,  difference between the wall temperature
Pe, local Péclet number and ambient temperature, Eq. (7)
r function representing wall geometry
r* =1 for plane flow and r* =r for axisymmetric Superscript
flow ! differentiation with respect to 5
/' =1+ (Ra,/Pe,)0, (1) 2"+ f = f7=0 ©9)
subject to the boundary conditions
0" + (%—nl)f()’—nlf"():xl(f'g—0’%) (2) ! Y

along with the boundary conditions

/=0,
=1
where primes denote partial differentiation with respect

to 1. The product n/ is called the lumped parameter and
is defined as

_ dInAT, [AT3de

0=1on n=0,
(3)

0 — 0 as n — oo,

T dIn¢  EATE “)
where the transformed variable ¢ is given by
&= / g dx (5)
0

with 7* =1 for plane flow and »* = r(x) for axisym-
metric flow, respectively.

We will show now that Egs. (1) and (2) admit a
closed form analytical solution. Thus, assuming that

Rax _ const. = b, (6)
€x
AT, oc &, (7)

then the lumped parameter n/ has the form

A

iy

(®)

and Egs. (1) and (2) reduce to ordinary differential
equations. We assume now that A = —1 . Hence, Egs. (1)
and (2) can be reduced as

f0)=0, f(0)=1+b,
[ =1

Eq. (8) admits for f”(n) two solutions which satisfy the
boundary conditions (10) and are real for any given
value of the parameter b in the range

3
—-=< .
2\b<0 (11)

(10)
as n§ — oo.

These solutions are

1 1 v 2
4/;(7,):__+§tanh2 b (V33T
272 27272 \V3-V3+2b
(12)
so that the reduced wall skin friction is given by
" 2b+3
0)==b —5 (13)

Also the non-dimensional temperature field can be ex-
pressed as:

(n) —1 3 , n
0.(n) = filth=1_ 3 cosh™? | —=
L (33426 (14)
2 V3-V3+2b
and the corresponding wall heat flux has the expression:
/ 1 11 2b+3
0.(0) =5 12(0) =/~ (15)
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3. Results and discussion

The dual temperature profiles (14) and the corre-
sponding dimensionless downstream velocity profiles
(12) are presented in Figs. 1-6 for some values of the
mixed convection parameter b in the range
—3/2<b < 0. Despite all these solutions are real in the
whole range —3/2<b < 0, it is seen that:

o If —3/2<b < —1, both the dual velocity profiles
fi(n) posses regions of reversed flow (where

Jiln) <0).

Fig. 1. Plot of 0.(n) against  for b = —0.4.
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Fig. 2. Plot of /7 (1) against # for b = —0.4.

Fig. 3. Plot of 0.(n) against 5 for b = —1.

o If —1<b <0 the profile /(1) continues to show re-
versed flow, while the profile /7 (1) becomes positive
for any n > 0 (except for b = —1, where according
to the boundary conditions (10) /% (0) = 0 holds).

One may also conclude that for —3/2<b < —1 all the

solutions 60, (1) and f.(n) although real, are non-physi-

cal and the only physically realizable solutions of the

problem are 0, () and f} (1) for —1 <b < 0.

Further, Figs. 7 and 8 show the variation with b of
the wall heat flux 0', (0) and skin friction f7(0). For our
purpose these figures provide sufficient details on the
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Fig. 4. Plot of 17 (n) against  for b = —1.
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Fig. 5. Plot of 0.(n) against  for b = —1.2.
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Fig. 6. Plot of /7 (1) against  for b = —1.2.
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Fig. 7. Plot of ¢,(0) against b € [-3/2,0].
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Fig. 8. Plot of /7 (0) against b € [—3/2,0].

structure changes of the solution. It is clearly seen that
both 0, (0) and f7(0) are symmetric and that the sym-
metry breaking bifurcation of the solutions happens at
the value b = —3/2. However, f7(0) and f”(0) connect
with each other at b= —3/2 and b — 0.

4. Conclusions

An exact analytical solution for the steady mixed
convection boundary layer flow over a plane or axi-
symmetric body of arbitrary shape has been presented
for the specific case where the wall temperature distri-
bution varies according to the inverse linear distance in
the streamwise direction. The multiplicity (dual) feature
of the problem has been found for the mixed convection

parameter b = Ra,/Pe, in the range —3/2<b < —1.
These solutions, velocity and temperature profiles are
such that f7 () = f"(n) and 6, () <0_(n) for a given
value of b € [3/2,0) and any 5 > 0 (the equality holds
only for =0 and n — oo, respectively). It has been
found that only the solutions 0, (y) and f7 () are rel-
evant to the physical problem and this is only when
—-1<bh<O.

Finally, we mention that for » > 0 no multiple solu-
tions are possible. In this range of the mixed convection
parameter the solution of the boundary value problem
(9)-(10) is unique for any » > 0. It is also available in a
closed analytic form and reads:

3
ﬁj—i-ln <\/%+ @)]

The corresponding dimensionless skin friction is given
by

S =1+
2 sinh?

(16)

1"(0) = b %+§. (17)
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